Supplementary Manual 3 - Contributing to the COBRA Toolbox
using git

A CRITICAL STEP This supplementary information is tailored to users who feel comfortable using
the terminal (or shell). It is recommended for other users to use the MATLAB.devTools described in
Steps 97-102. A Github account is required and g¢it must be installed. You also must already have forked
the opencobra/cobratoolbox repository by clicking on the fork button on the main opencobra/cobratoolbox
repository page.

The repository of the COBRA Toolbox is version controlled with the open-source standard git on the
public code development site https://github.com. Any incremental change to the code is wrapped in
a commit, tagged with a specific tag (called SHA1), a commit message, and author information, such as
the email address and the user name. Contributions to the COBRA Toolbox are consequently commits
that are made on branches.

The development scheme adopted in the repository of the COBRA Toolbox has 2 branches: a master and
a develop branch. The stable branch is the master branch, while it is the develop branch that includes
all new features and to which new contributions are merged. Contributions are submitted for review and
testing through pull requests, the git standard. The develop branch is regularly merged into the master
branch once testing is concluded. The development scheme has been adopted for obvious reasons: the
COBRA Toolbox is heavily used on a daily basis, while the development community is active. The key
advantage of this setup is that developers can work on the next stable release, while users can enjoy a
stable version. Developers and users are consequently working on the same code base without interfering.
Understanding the concept of branches is key to submitting hassle-free pull requests and starting to
contribute using git.

! CAUTION The following commands should only be run from the terminal (or the shell). An SSH key
must be set in your Github account settings.

In order to get started, clone the forked repository:
$ git clone git@github.com:<username>/cobratoolbox.git fork-cobratoolbox

This will create a folder called fork-cobratoolbox. Make sure to replace <username> with your Github
username. Any of the following commands are meant to be run from within the folder of the fork called
fork-cobratoolboz.

$ cd fork-cobratoolbox
In order to complete the cloned repository with external code, it is recommended to clone all submodules:
$ git submodule update --init

Note that your fork is a copy of the opencobra/cobratoolbox repository and is not automatically updated.
As such, you have to configure the address of the opencobra/cobratoolbox repository:

$ git remote add upstream git@github.com:opencobra/cobratoolbox.git

Now, there are two addresses (also called remotes) configured: origin and upstream. You can verify this
by typing:

$ git remote -v

In order to update your fork, run the following commands:

$ git fetch upstream

First, update the master branch:

$ git checkout master # checkout the <master> branch locally
$ git merge upstream/master # merge the changes from the upstream repository
$ git push origin master # push the changes to the <master> branch of the fork

Then, update the develop branch

$ git checkout develop # checkout the <develop> branch
$ git merge upstream/develop # merge the changes from the upstream repository
$ git push origin develop # push the changes to the <develop> branch of the fork

7?TROUBLESHOOTING Should the step fail to checkout the develop branch, you should create the
develop branch first based on the develop branch of the upstream repository:

$ git checkout -b develop upstream/develop

Create a contribution and submit a pull request

Now, as the fork is up-to-date with the upstream repository, start a new contribution. A new contribution
must be made on a new branch, that originates from the develop branch. Create the new branch:


https://github.com

$ git checkout -b <myBranch> develop

Now, you can make changes in the folder fork-cobratoolbox. Once you are done making changes, you can
contribute the files. An important command that lists all changes is to retrieve the repository status:

$ git status

A list is displayed with new, modified, and deleted files. You can add the changes (even deletions) by
adding the file:

$ git add <fileName>.<fileExtension>

A CRITICAL STEP Contrary to what is sometimes provided as a shortcut, it is not advised to add
all files all at once using as this command will add all files, even hidden files and binaries.

$ git add . # bad practice

Then, commit the changes by setting a commit message <yourMessage>:
$ git commit -m "<myMessage>"

Finally, push your commit to Github:

$ git push origin <myBranch>

You should then see your commit online, and if ready, you can open a pull request. You can select your
branch in the dropdown menu and list all commits by clicking on COMMITS.

Continue working on your branch after a while (rebase) If there have been major changes or
if you want to continue working on a branch after a while, it is recommended to do a rebase. In simple
terms, rebasing your branch shifts your commits to the top of the branch and includes all changes from
the upstream repository. Before doing so, make sure that you do not have any uncommitted or local
changes (git status).

git checkout develop

git fetch upstream

git merge upstream/develop

git submodule update

git checkout <myBranch>
git rebase develop

©hH H P P P P

If you do not have any conflicts, you should see messages showing that your changes have been applied.

If however there are conflicts, it is advised to use a merge tool such as kdiff3. In order to install a merge
tool or abort the rebase process, type:

$ git rebase --abort

In order to have the changes on <myBranch> reflected in the online repository, push the changes with
force. Pushing with force is required as the history of the branch has been rewritten during rebase.

$ git push <myBranch> --force

Selectively use a commit on your branch (cherry-pick) Imagine having two branches called
<myBranch-1> and <myBranch-2>. On branch <myBranch-1> is a commit with a SHA1 that you
need on <myBranch-2>. You can cherry-pick the commit from <myBranch-1> to <myBranch-2> by
typing:

$ git checkout myBranch-2

$ git cherry-pick SHA1

If there are no conflicts, the displayed message should contain the commit message and author information.
In order to have the commit listed online, conclude the cherry-pick by pushing the commit to the remote
repository:

$ git push myBranch-2

Displaying the history of a file Sometimes, the history of a file is not correctly displayed online.
You can however display the history by typing:

$ git log --follow --pretty=short <fileName>.<fileExtension>
You can exit the screen by typing the letter q.

When the MATLAB.devTools are installed, you can also display the history of a file from within MAT-
LAB:

>> history('fileName.fileExtension')



	INTRODUCTION
	Development of the protocol
	Applications of COBRA methods
	Key features and comparisons
	Experimental Design
	Software architecture of the COBRA Toolbox 3.0
	Open-source software development with the COBRA Toolbox
	Controls

	Required expertise
	Limitations

	MATERIALS
	Equipment setup
	Required hardware
	Required software
	Optional software
	Solvers
	Application specific software
	Contributing software


	PROCEDURE
	Initialisation of the COBRA Toolbox
	Verify and test the COBRA Toolbox
	Importing a reconstruction or model
	Exporting a reconstruction or model
	Use of rBioNet to add reactions to a reconstruction
	Use of a spreadsheet to add reactions to a reconstruction
	Use of scripts with reconstruction functions
	Check the scaling of a reconstruction 
	Select a double- or quad-precision optimisation solver
	Identify stoichiometrically consistent and inconsistent reactions
	Identify stoichiometrically consistent and inconsistent molecular species
	Set simulation constraints
	Identify molecular species that leak, or siphon, across the boundary of the model
	Identify flux inconsistent reactions
	Flux balance analysis
	Relaxed flux balance analysis
	Sparse flux balance analysis
	Identify dead-end metabolites and blocked reactions
	Gap fill a metabolic network
	Extracellular metabolomic data
	Intracellular metabolomic data
	Integration of transcriptomic and proteomic data
	Adding biological constraints to a flux balance model
	Qualitative chemical and biochemical fidelity testing
	Quantitative biochemical fidelity testing
	MinSpan Pathways: a sparse basis of the nullspace of a stoichiometric matrix
	Low dimensional flux variability analysis
	High dimensional flux variability analysis
	Uniform sampling of steady-state fluxes
	Identify all genetic manipulations leading to targeted overproductions
	Atomically resolve a metabolic reconstruction
	Thermodynamically constrain a metabolic model
	Convert a flux balance model into a kinetic model
	Compute a non-equilibrium kinetic steady state
	Compute a moiety conserved non-equilibrium kinetic steady state
	Human metabolic network visualisation with ReconMap
	Variable scope visualisation of a network with Paint4Net
	Contributing to the COBRA Toolbox with MATLAB.devTools
	Engaging with the COBRA Toolbox forum


	TROUBLESHOOTING
	TIMING
	ANTICIPATED RESULTS
	Initialisation of the COBRA Toolbox
	Importing a reconstruction or model
	Check the scaling of a reconstruction 
	Select a double- or quad-precision optimisation solver
	Identify stoichiometrically consistent and inconsistent molecular species
	Sparse flux balance analysis
	Integration of transcriptomic and proteomic data
	Quantitative biochemical fidelity testing
	Uniform sampling of steady-state fluxes
	Identify all genetic manipulations leading to targeted overproductions
	Identify all genetic manipulations leading to targeted overproductions
	Thermodynamically constrain a metabolic model
	Human metabolic network visualisation with ReconMap
	Variable scope visualisation of a network with Paint4Net


	Supplementary Manual 1 - MATLAB basics
	Supplementary Manual 2 - Shell or Terminal basics
	Supplementary Manual 3 - Contributing to the COBRA Toolbox using git

